Spectral pairs in cartesian coordinates
نویسندگان
چکیده
منابع مشابه
Spectral Pairs in Cartesian Coordinates
Let Ω ⊂ R have finite positive Lebesgue measure, and let L (Ω) be the corresponding Hilbert space of L-functions on Ω. We shall consider the exponential functions eλ on Ω given by eλ (x) = e . If these functions form an orthogonal basis for L (Ω), when λ ranges over some subset Λ in R , then we say that (Ω,Λ) is a spectral pair, and that Λ is a spectrum. We conjecture that (Ω,Λ) is a spectral p...
متن کاملExplicitly computing geodetic coordinates from Cartesian coordinates
This paper presents a new form of quartic equation based on Lagrange’s extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari’s line is found, which avoids the need of a good starting guess for iterative methods. A new expli...
متن کاملInstantons in non-Cartesian coordinates
The explicit multi-instanton solutions by ’tHooft and Jackiw, Nohl & Rebbi are generalized to curvilinear coordinates. The idea is that a gauge transformation can notably simplify the expressions obtained after the change of variables. The gauge transform generates a compensating addition to the gauge potential of pseudoparticles. Singularities of the compensating field are irrelevant for physi...
متن کاملTransforming Geocentric Cartesian Coordinates to Geodetic Coordinates by a New Initial Value Calculation Paradigm
Transforming geocentric Cartesian coordinates (X, Y, Z) to geodetic curvilinear coordinates (φ, λ, h) on a biaxial ellipsoid is one of the problems used in satellite positioning, coordinates conversion between reference systems, astronomy and geodetic calculations. For this purpose, various methods including Closed-form, Vector method and Fixed-point method have been developed. In this paper, a...
متن کاملar X iv : m at h / 99 12 13 1 v 2 [ m at h . FA ] 2 8 Ju n 20 01 SPECTRAL PAIRS IN CARTESIAN COORDINATES
Let Ω ⊂ R have finite positive Lebesgue measure, and let L (Ω) be the corresponding Hilbert space of L-functions on Ω. We shall consider the exponential functions eλ on Ω given by eλ (x) = e . If these functions form an orthogonal basis for L (Ω), when λ ranges over some subset Λ in R , then we say that (Ω,Λ) is a spectral pair, and that Λ is a spectrum. We conjecture that (Ω,Λ) is a spectral p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Fourier Analysis and Applications
سال: 1999
ISSN: 1069-5869,1531-5851
DOI: 10.1007/bf01259371